Learning

FLAC2D In-Person Introductory Course
Minneapolis, Minnesota
Apr 3, 2023 - Apr 5, 2023

Live in-person introductory training course. This 3-day course provides a general overview of FLAC2D and covers many basic concepts and recommended procedures for geotechnical numerical analysis with FLAC2D.


PFC In-Person Introductory Course
Minneapolis, Minnesota
Apr 17, 2023 - Apr 20, 2023

Live in-person introductory training course. This four-day course provides guidance in the use of the Itasca codes PFC2D and PFC3D to simulate the mechanical behavior of granular and solid materials.


Itasca Educational Partnership

IEP Research Program

Itasca's IEP Research Program offers assistance to qualifying graduate students with a desire to utilize Itasca software in their research.

IEP Teaching Program
Academic Software
The Fairhurst Files

Software Tutorials

Plotting Borehole Core Data using Geometry and FISH

In this example, you will see how to create your own custom plot of drill core data containing location, orientation, depth, and geotechnical data (lithography, fracture count, rock strength, weathering, and RMR).

FLAC3D 6.0 PFC Plugin Conveyor
MINEDW Tutorial (Part 4: Meshing)

In this tutorial we will go over meshing, from the creation of a 2D mesh and how to import it to MINEDW, to the inclusion of topography, layers, and pinch-outs to different areas of interest in the model.

Technical Papers

Connectivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture network models

A major use of DFN models for industrial applications is to evaluate permeability and flow structure in hardrock aquifers from geological observations of fracture networks. The relationship between the statistical fracture density distributions and permeability has been extensively studied, but there has been little interest in the spatial structure of DFN models, which is generally assumed to be spatially random (i.e., Poisson). In this paper, we compare the predictions of Poisson DFNs to new DFN models where fractures result from a growth process defined by simplified kinematic rules for nucleation, growth, and fracture arrest.

The Economic Challenges of Dewatering at the Victor Diamond Mine in Northern Ontario, Canada

The challenges of mining economically have never been greater than under current global financial conditions.

Tunnelling and reinforcement in heterogeneous ground – A case study

Abstract

A case study of tunnelling in heterogeneous ground conditions has been analysed. The case involves a tunnel excavated in mixed-face conditions, where the main host material was rock, but for a distance of about 30 m, the tunnel had to be driven through a thick layer of soil, primarily moraine and sandy soil materials.During tunnel drifting, a "chimney" cave developed through the soil layer, resulting in a surface sinkhole.This case was analysed using a three-dimensional numerical model with the FLAC3D software code, in which the soil stratigraphy and tunnel advance were modelled in detail. Tunnel and soil reinforcement in the form of jet grouting of the soil, pipe umbrella arch system, bolting, and shotcreting, was explicitly simulated in the model. The studyaimed at comparing model results with observations and measurements of ground behaviour, and to replicate the major deformation pattern observed. The modelling work was based on a previous generic study in which various factors influencing tunnel and ground surface deformations were analysed for different cases of heterogeneous ground conditions.Model calibration was performed through adjusting the soil shear strength. The calibration provided a qualitatively good agreement with observed behaviour. Calculated deformations on the ground surface were in line with measured deformations, and the location of the tunnel collapse predicted by the model. The installed tunnel reinforcement proved to be critical to match with observed behaviour. Without installed pipe umbrella arch system, calculated deformations were overestimated, and exclusion of jet grouting caused collapse of the tunnel. These findings prove that, in particular, jet grouting of the soil layer was necessary for the successful tunnel advance through the soil layer.

Latest News
  • ARMA 2022 Student Design Competition Congratulations to the winners of the American Rock Mechanics Association's (ARMA) 2022 Student Design Competition....
    Read More
  • International Slope Stability 2022 Itasca is proud to be a Diamond sponsor of Slope Stability 2022 (October 17-21 |...
    Read More
  • Software Benchmark Tests To help with your hardware configuration decisions, Itasca has created an online benchmark speed test...
    Read More

Upcoming Events
3 Apr
FLAC2D In-Person Introductory Course
Live in-person introductory training course. This 3-day course provides a general overview of FLAC2D and covers many basic concepts and... Read More
17 Apr
PFC In-Person Introductory Course
Live in-person introductory training course. This four-day course provides guidance in the use of the Itasca codes PFC2D and PFC3D to s... Read More